61 research outputs found

    Remedy for corporate human rights abuses in transitional justice contexts

    Get PDF
    Corporations and other business enterprises often operate in countries affected by conflict or repressive regimes and commit human rights violations and crimes under international law, either as the main perpetrator or as accomplices by aiding and abetting government forces. In transitional justice contexts, the trials, truth commissions, and reparations typically included within the set of remedy mechanisms have focused primarily on abuses by state authorities’ or by non-state actors directly connected to the state, such as paramilitary groups or death squads. Innovative uses of transitional justice mechanisms across the world, however, have started to address, even if still only in a marginal way, corporate accountability for human rights abuses and crimes under international law and have attempted to provide redress for victims. This research analyses this development. This research provides an original contribution to the field on business and human rights and the little-researched link with transitional justice by assessing how remedies for corporate human rights abuses and crimes under international law can be achieved in transitional justice contexts. To answer this question this research first analyses how different mechanisms (judicial processes at the international and domestic level, truthseeking initiatives, and reparations programmes) have dealt, or failed to deal, with remedy for victims of corporate human rights abuses. It then examines their outcomes, the results those processes have achieved and the obstacles they have faced. The research takes a victim-oriented approach by analysing the tools, instruments and institutions available for victims (the bearers of rights) in transitional justice contexts (i.e. in countries emerging from conflict or authoritarian regimes) to remedy violations when those are committed by corporations

    Dysregulation of the Autonomous Nervous System in Patients with Temporomandibular Disorder: A Pupillometric Study

    Get PDF
    The role of the autonomic nervous system (ANS) was recently investigated in Temporomandibular disorders (TMD). Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP); Infrared light at Forced Habitual Occlusion (FHO); Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio) and yellow-green and infrared (light/darkness ratio) lighting were carried out. Within group differences of pupil size and of "ratio" were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with TMD

    To verify four 5-year-old mathematical models to predict the outcome of ICU patients

    Get PDF
    The aim of this study is to verify calibration and discrimination after 5 years in the case mix of patients admitted to the Intensive Care Unit (ICU) during the year 2000. In this way we want to perform a quality control of our ICU in order to justify the increased amount of money spent for intensive care.A prospective study has been made on the 357 patients admitted to the ICU during the year 2000. The Apache II score was calculated within the first 24 hours and, depending on the length of stay in the ICU, on the 5(th), 10(th) and 15(th) day after ICU admission. On the basis of the 4 mathematical models death risk has been calculated for each of the 4 times. The Hosmer-Lemeshow test was performed for calibration and ROC curves for discrimination, always for each of the 4 mathematical models.The 1(st) model, at 24 hours from ICU admission, showed a bad calibration (p=0.000088), while the ROC curve was 0.744+/-0.32. Also the 2(nd) model, at the 5(th) day from admission, showed a bad calibration (p=0.000588), with ROC curve of 0.827+/-0.04. The 3(rd) model (10(th) day), was well calibrated (p=0.112247) and discriminating (ROC=0.888 +/-0.04). Finally the models at 15 days showed again a bad calibration (p=0.001422) but a very good discrimination (area=0.906+/-0.06).Developing mathematical models to predict mortality within ICUs can be useful to assess quality of care, even if these models should not be the only ICU quality controls, but must be accompanied by other indicators, looking at quality of life of the patients after ICU discharge

    Introducing the INSIGNIA project: environmental monitoring of pesticide use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides by honey bees. It is a 30-month pilot project initiated and financed by the EC (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of 1 km radius, increasing to several km if required, depending on the availability and attractiveness of food. All material collected is accumulated in the hive.The honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. Because of the non-destructive remit of the project, for pesticides, pollen is the focal matrix and used as trapped pollen and beebread in this study. Although beeswax can be used as a passive sampler for pesticides, this matrix is not being used in INSIGNIA because of its polarity dependent absorbance, which limits the required wide range of pesticides to be monitored. Alternatively, two innovative non-biological matrices are being tested: i) the “Beehold tube”, a tube lined with the generic absorbent polyethylene-glycol PEG, through which hive-entering bees are forced to pass, and ii) the “APIStrip” (Absorbing Pesticides In-hive Strips) with a specific pesticide absorbent which is hung between the bee combs.Beebread and pollen collected in pollen traps are being sampled every two weeks to be analysed for pesticide residues and to record foraging conditions. Trapped pollen provides snapshots of the foraging conditions and contaminants on a single day. During the active season, the majority of beebread is consumed within days, so beebread provides recent, random sampling results. The Beehold tube and the APIStrips are present throughout the 2-weeks sampling periods in the beehive, absorbing and accumulating the incoming contaminants. The four matrices i.e. trapped pollen, beebread, Beehold tubes and APIStrips will be analysed for the presence of pesticides. The botanical origin of trapped pollen, beebread and pollen in the Beehold tubes will also be determined with an innovative molecular technique. Data on pollen and pesticide presence will then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and rigorously tested in four countries in Year 1, and the best practices will then be ring-tested in nine countries in Year 2. Information about the course of the project, its results and publications will be available on the INSIGNIA website www.insignia-bee.eu and via social media: on Facebook (https://www.facebook.com/insigniabee.eu/); Instagram insignia_bee); and Twitter (insignia_bee). Although the analyses of pesticide residues and pollen identification will not be completed until December 2019, in my talk I will present preliminary results of the Year 1 sampling.info:eu-repo/semantics/publishedVersio

    Introducing the INSIGNIA project: Environmental monitoring of pesticides use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides via honey bees. It is a pilot project initiated and financed by the European Commission (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, chemistry, molecular biology, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of about 1 km radius, increasing to several km if required depending on the availability and attractiveness of food. All material collected is concentrated in the hive, and the honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. For pesticides, pollen and wax are the focal matrices. Pollen collected in pollen traps will be sampled every two weeks to record foraging conditions. During the season, most of pollen is consumed within days, so beebread can provide recent, random sampling results. On the other hand wax acts as a passive sampler, building up an archive of pesticides that have entered the hive. Alternative in-hive passive samplers will be tested to replicate wax as a “pesticide-sponge”. Samples will be analysed for the presence of pesticides and the botanical origin of the pollen using an ITS2 DNA metabarcoding approach. Data on pollen and pesticides will be then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and tested in four countries in year 1, and the best practices will then be ring-tested in nine countries in year 2. Information about the course of the project and its results and publications will be available in the INSIGNIA website www.insignia-bee.eu.info:eu-repo/semantics/publishedVersio

    Oxidative Stress Status in the Saliva of Growing Subjects as a Potential Pubertal Biomarker

    No full text
    The aim of this study is to evaluate the oxidative stress in saliva during physical growth. A cohort of 30 volunteers (16 females and 14 males), 6–30 years of age, was enrolled in this study. The subjects Were randomly recruited from patients who were referred to the Dental Clinic of the University of L'Aquila for a regular checkup. Each subject's maturity level was assessed according to the Tanner scale and their saliva samples were collected by “spitting method”. Thiobarbituric acid reactive substances (TBARS) and ferric ion reducing antioxidant power (FRAP) assays were assessed to evaluate lipid peroxidation - one of the major compounds of oxidative stress - and antioxidant power of saliva. The results show TBARS values increased from pre/early to mid-pubertal status, peaked at mid-pubertal status, and then decreased steadily thereafter. Meanwhile, no characteristic trends in the FRAP data in relation to Tanner stage were observed. Our findings suggest that the peak of peroxidation was found to coincide with the period of mid-puberty (pubertal peak – period with strongest growth). In conclusion, the present data provide a easy, non-invasive method for monitoring development staged in subjects receiving orthodontic therapy

    To verify four 5-year-old mathematical models to predict the outcome of ICU patients

    No full text
    Aim. The aim of this study is to verify calibration and discrimination after 5 years in the case mix of patients admitted to the Intensive Care Unit (ICU) during the year 2000. In this way we want to perform a quality control of our ICU in order to justify the increased amount of money spent for intensive care. Methods. A prospective study has been made on the 357 patients admitted to the ICU during the year 2000. The Apache II score was calculated within the first 24 hours and, depending on the length of stay in the ICU, on the 5 th, 10th and 15th day after ICU admission. On the basis of the 4 mathematical models death risk has been calculated for each of the 4 times. The Hosmer-Lemeshow test was performed for calibration and ROC curves for discrimination, always for each of the 4 mathematical models. Results. The 1st model, at 24 hours from ICU admission, showed a bad calibration (p=0.000 088), while the ROC curve was 0.744±0.32. Also the 2nd model, at the 5th day from admission, showed a bad calibration (p=0.000588), with ROC curve of 0.827±0.04. The 3 rd model (10th day), was well calibrated (p=0.112247) and discriminating (ROC=0.888 ±0.04). Finally the models at 15 days showed again a bad calibration (p=0.001422) but a very good discrimination (area=0.906±0.06). Conclusion. Developing mathematical models to predict mortality within ICUs can be useful to assess quality of care, even if these models should not be the only ICU quality controls, but must be accompanied by other indicators, looking at quality of life of the patients after ICU discharge
    corecore